МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБАУ ВО «МГТУ»)

Методические указания к выполнению расчетно-графических работ по дисциплине

Теория механизмов и машин

(для всех специальностей и форм обучения)

Разработчик

Прежин С.Д., ст. преподаватель

Оглавление

1	P	асчетно-графическая работа «Синтез и уравновешивание плоских	
p	ычая	кных механизмов»	3
•		Пример решения	
	1.2	Примерный перечень вопросов для защиты	11
2	P	асчетно-графическая работа «Анализ динамики машинных агрегатов»	12
	2.1	Пример решения	14
	2.2	Примерный перечень вопросов для защиты	19
3	T	ребования к оформлению РГР	20
4	K	Сритерии и шкала оценивания расчетно-графической работы	21
5	Π	Іриложения	22
6	C	Список рекомендуемой литературы	24

1 Расчетно-графическая работа «Синтез и уравновешивание плоских рычажных механизмов».

Задание 1.1. Синтез кривошипно-ползунного механизма Исходным параметрами синтеза являются: ход ползуна h и допустимый угол давления со стороны ползуна 3 на шатун 2 $\mathcal{G}_{\partial on}$.

1.1.1.Исходя из угла давления $\theta_{32} = \theta_{\partial on}$ и заданного хода ползуна, графически в принятом масштабе определить длину шатуна l_2 для соосного кривошипноползунного механизма с e=0 и $l_1=h/2$ (рис. 1). Рассчитать отношение $\lambda_2=l_2/l_1$.

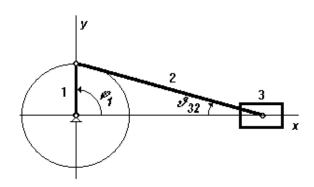


Рис. 1

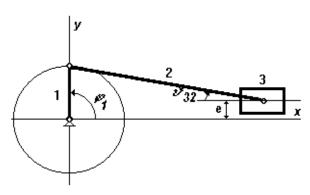


Рис. 2

1.1.2. Задавшись положительным дезаксиалом $e \approx 0.2h$ ($\approx 40\%$ l_1) (рис. 2), приняв рассчитанное ранее значение λ_2 для заданного хода ползуна h определить значение длины кривошипа l_1 путем последовательного табулирования выражения $h = \sqrt{(l_1 + l_2)^2 - e^2} - \sqrt{(l_1 - l_2)^2 - e^2}$

по параметру l_I в окрестностях его значений близких к половине хода ползуна от $l_I = 0.45h$ до $l_I = 0.55h$ с шагом табулирования 0.005h. По результатам табулирования выбрать с точностью до 1мм значение l_I , соответствующее наилучшему соответствию хода ползуна заданному. Для полученной длины кривошипа и принятого дезаксиала построить в выбранном масштабе внесоосный кривошипноползунный механизм для положения кривошипа $\varphi_I = 270\,^\circ$, при котором опреде-

лить максимальное значение угла давления ползуна на шатун g_{32max} для синтезированного механизма.

Задание 1.2. Синтез кривошипно — коромыслового механизма Исходными параметрами синтеза являются: длина стойки l_4 , длина ведомого коромысла l_3 и его угловые координаты в крайних положениях γ_1 и γ_2 (рис. 3). 1.2.1. Длины шатуна l_2 и кривошипа l_1 найти графически в принятом масштабе, исходя из очевидных из рисунка соотношений

$$l_{AC_1} = l_1 + l_2; l_{AC_2} = l_1 - l_2,$$

откуда,

$$l_2 = (l_{AC_1} + l_{AC_2})/2; l_1 = (l_{AC_1} - l_{AC_2})/2$$



Рис. 3

- 1.2.2. Определить графически g_{32max} . Максимальный угол давления со стороны коромысла на шатун g_{32max} будет при $\varphi=0$ или 180° .
- 1.2.3. Проверить выполнение для механизма правила Грасгофа: «Самое короткое звено шарнирного четырёхзвенника может быть кривошипом, если сумма длин самого короткого и самого длинного звеньев меньше суммы длин остальных звеньев».

Задание 1.3. Статическое уравновещивание кривошипно-ползунного механизма Для соосного кривошипно-ползунного механизма, спроектированного в задании 1.1. требуется провести частичное статическое уравновешивание путём постановки противовеса на кривошип.

Как известно, при данном способе уравновешивания, остаётся неуравновешенной сила инерции от поступательного движения ползуна Φ_{Cx} – m_C a_{Cx} , где a_{Cx} – ускорение движения ползуна в направлении оси x, которое можно определить из выражения

$$a_{Cx} = \omega_l^2 l_1 \cos \varphi_l + (1/\lambda_2) \omega_l^2 l_1 \cos 2\varphi_l$$

где первое слагаемое определяет силу инерции первого порядка, действующую на ползун, а второе слагаемое - силу инерции второго порядка. Очевидно, что максимальное значение ускорения наблюдается при $\varphi_l = 0$:

$$a_{CxMAX} = \omega_l^2 l_l + (1/\lambda_2) \omega_l^2 l_l.$$

Исходными данными для проектирования являются: длина кривошипа l_1 , длина шатуна l_2 , массы кривошипа m_1 , шатуна m_2 и ползуна m_3 , положения центров масс на звеньях S_1 и S_2 . Длины звеньев принять по результатам выполнения задания 1.1. Массы звеньев рассчитать из соотношения m_i =30 l_i , где l_i – длина i-того звена в метрах, m_i – масса i-того звена в кг. Массу ползуна принять равной массе шатуна. Центр масс кривошипа считать расположенным по середине звена, центр масс шатуна считать расположенным на расстоянии 1/3 длины шатуна от кривошипа.

1.3.1. Перейти от распределённых масс звеньев к массам, сосредоточенным в шарнирах A,B,C (рис. 4):

 $m_A = m_I BS_I /AB;$

 $m_B = m_1 A S_1 / AB + m_2 C S_2 / BC;$

 $m_C = m_2 BS_2/BC + m_3$.

1.3.2. Рассчитать массу противовеса $m_{\kappa l}$ из соотношения: $m_{\kappa l} = m_B \, l_I / r_{\kappa l}$, где расстояние от оси вращения кривошипа до центра масс противовеса $r_{\kappa l}$ принять в пределах $(0,2\div0,4)\, l_I$, определить положение центра масс противовеса на схеме механизма, условно обозначить противовес.

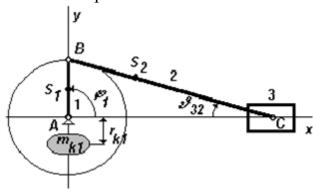


Рис. 4

1.3.3. Для оценки эффективности частичного статического уравновешивания механизма сравнить, максимальную силу инерции от поступательного движения ползуна $\Phi_{CxMAX} = -m_C \, a_{CxMAX}$ с силой инерции от массы $m_B : \Phi_B = -m_B \, \omega_l^2 \, l_l$, путём расчёта отношения

 $\Phi_{CxMAX}/(\Phi_B + \Phi_{CxMAX}) = (m_C (1+\lambda_2))/(m_B \lambda_2 + m_C (1+\lambda_2)),$ соответствующего доле нескомпенсированной неуравновещенности в общей начальной неуравновешенности механизма.

Задание 1.4. Полное статическое уравновешивание кривошипно-коромыслового механизма

Исходными данными к выполнению задания являются длины и массы звеньев кривошипно-коромыслового механизма, спроектированного в задании 1.2. Массы звеньев рассчитать из соотношения m_i =30 l_i , где l_i – длина i-того звена в метрах,

 m_i — масса i-того звена в кг. Центры масс подвижных звеньев S_i принять расположенными точно по середине подвижных звеньев.

1.4.1. Перейти от распределённых масс звеньев к массам, сосредоточенным в шарнирах A,B,C,D:

 $m_A = m_1 BS_1 /AB;$

 $m_B = m_1 A S_1 / AB + m_2 C S_2 / BC;$

 $m_C = m_2 BS_2 /BC + m_3 DS_3 /CD;$

 $m_D = m_3 \ CS_3 / CD$.

1.4.2. Рассчитать массу противовесов $m_{\kappa l}$ и $m_{\kappa 3}$ и из соотношений: $m_{\kappa l} = m_B \, l_1 / r_{\kappa l}$, $m_{\kappa 3} = m_C \, l_3 / r_{\kappa 3}$ где расстояния от оси вращения кривошипа до центра масс противовесов r_{κ} принять в пределах $(0,2 \div 0,4) \, l$, определить положение центров масс противовесов на кинематической схеме механизма, условно обозначить противовесы.

Выбор варианта задания

Выполнение РГР осуществляется в соответствии с индивидуальным заданием, которое определяется, исходя из значений двух целочисленных параметров: K и M. Значение параметра M определяет последняя цифра шифра зачетной книжки студента, значение параметра K - предпоследняя цифра того же шифра. Например, шифру 323840 соответствует K = 4 и M = 10.

Задание 1.1.

Задаётся ход ползуна h = (100*K+10*M) мм, например, при K = 4 и M = 10 получаем h = (100*4+10*10) = 500 мм. Значение $\theta_{\partial on}$ задаётся из соотношения $\theta_{\partial on} = (20+M)^\circ$, чему, например, при M = 10 соответствует $\theta_{\partial on} = 30^\circ$. Задание 1.2.

Задаются длины стойки l_4 и коромысла l_3 и предельные углы поворота коромысла γ_1 и γ_2 из соотношений

$$l_4 = 1.6*h, l_3 = 1.9*h, \gamma_1 = (10*K + M)^{\circ}, \gamma_2 = \gamma_1 + 50^{\circ},$$

где h—ход ползуна в mm из задания 1.1. Например, для K=4, M=10, h=500 mm получим $l_4=1.6*500=800$ mm, $l_3=1.9*500=950$ mm, $\gamma_1=(10*4+10)°=50°$, $\gamma_2=50°+50°=100°$.

Задание 1.3, задание 1.4.

Задания выполняются на основе результатов заданий 1.1.1 и 1.2 и не требуют определения дополнительных параметров расчёта.

1.1 Пример решения.

Задание 1.1. Синтез кривошипно-ползунного механизма.

1.1.1 Соосный механизм

Исходные данные:

Ход ползуна
$$h = (100 \bullet K + 10 \bullet M) = мм;$$

 $h = (100 \bullet 6 + 10 \bullet 5) = 650мм$

Допустимый угол давления со стороны ползуна 3 на шатун 2 $g_{\partial on} = (20 + M);$

$$\mathcal{G}_{\partial on} = (20 + 5) = 25^{\circ}$$

$$g_{32} = g_{00n}$$

 $e=0$ и $l_1 = h/2$

Тогда

$$l_1 = \frac{650}{2} = 325 \text{MM}.$$

Примем масштаб $\mu_1 = h/d$

$$\mu_1 = 650 / 65 = 10$$
 mm / mm = $0,01$ m / mm

Определим l_2

$$artheta_{32max}=rcsinrac{l_1}{l_2};$$
 $l_2=rac{l_1}{sinartheta_{\mu
m on}}$ $l_2=rac{325}{\sin25}=770$ мм

Рассчитаем отношение $\lambda_2 = \frac{l_2}{l_1}$

$$\lambda_2 = \frac{770}{325} = 2.37$$

1.1.2 Механизм с дезаксиалом

Исходные данные:

Ход ползуна: h=650мм Дезаксиал: e=0.2*h

e = 0.2 * 650 = 130 мм

длина шатуна: $l_2 = 770$ мм

Определим длину кривошипа l_1 с помощью метода последовательного табулирования

$$h = \sqrt{(l_1 + l_2)^2 - e^2} - \sqrt{(l_1 - l_2)^2 - e^2}$$
 с шагом $l_1 = 0.005 * h$
$$l_1 = 0.005 * 650 = 3.25$$

Таблица сводных данных

I	h
292,5	595,0541
295,75	601,7071
299	608,3619
302,25	615,0184
305,5	621,6768
308,75	628,337
312	634,9992
315,25	641,6633
318,5	648,3294
321,75	654,9976

Из представленной выше таблицы видно, что наилучшее приближение к h имеет:

$$l_1 = 318.5$$
мм

Рассчитаем отношение
$$\lambda_2={l_2/l_1}$$

$$\lambda_2={770/3}_{18.5}=2.41$$

Задание 1.2 Синтез кривошипно-коромыслового механизма

1.2.1 Исходные данные:

длина стойки $l_4 = 1.6 * h$;

$$l_4 = 1.6 * 650 = 1040$$
 mm

длина ведомого коромысла $l_3 = 1.9 * h$

$$l_3 = 1.9 * 650 = 1235$$
MM

угловые координаты в крайних положениях $\gamma_1 = (10 * K + M)$

$$\gamma_1 = (10 * 6 + 5) = 65^0$$

$$\gamma_2 = \gamma_1 + 50$$

$$\gamma_2 = 65 + 50 = 115^0$$

Длины шатуна l_2 и кривошипа l_1 найдем графически.

$$l_{AC_1} = l_1 + l_2$$
 ; $l_{AC_2} = l_1 - l_2$, откуда

$$l_2 = \frac{l_{AC_1} + l_{AC_2}}{2}$$
; $l_1 = \frac{l_{AC_1} - l_{AC_2}}{2}$

Примем масштаб $\mu_l = l_4/l_{\scriptscriptstyle 4$ изм ;

$$l_{4_{\rm H3M}} = 70_{
m MM}$$

$$\mu_l = \frac{1040}{70} = 14.9 \frac{MM}{MM} = 0.0149 \frac{M}{MM}$$
;

Найдем AC_1 , AC_2 , l_1 , l_2

$$AC_1 = AC_{1_{\mathsf{H3M}}} * \mu_l$$

$$AC_1 = 130 * 14,9 = 1937$$
 мм

$$AC_2 = AC_{2_{\mathsf{H3M}}} * \mu_l$$

$$AC_2 = 83 * 14,9 = 1237$$
 мм

$$l_2 = \frac{1937 + 1237}{2} = 1587 \text{MM}$$

$$l_1 = \frac{1937 - 1237}{2} = 350 \text{мм}$$

1.2.2 Определим графически ϑ_{32max} . Максимальный угол давления со стороны коромысла на шатун ϑ_{32max} будет при $\varphi=0$ или 180^{0} .

В данном случае $\varphi = 63^{\circ}$ при $\varphi = 33^{\circ}$.

1.2.3 Проверим выполнение для механизма правила Грасгофа: «Самое короткое звено шарнирного четырехзвенника может быть кривошипом, если сумма длин самого короткого и самого длинного звеньев меньше суммы длин остальных звеньев».

```
l_1=350мм; l_2=1587мм; l_3=1235мм; l_4=1040мм; l_1+l_2=350+1587=1937мм; l_3+l_4=1235+1040=2275мм; l_1+l_2< l_3+l_4 (правило выполняется, звено 1- кривошип)
```

Задание 1.3. Статическое уравновешивание кривошипно-ползунного механизма.

1.3.1 Перейдем от распределенных масс звеньев к массам, сосредоточенным в шарнирах A,B,C:

$$m_1 = 30 * l_1;$$
 $m_1 = 30 * 0.35 = 10.5 \text{ кг.}$
 $m_2 = 30 * l_2;$
 $m_2 = 30 * 0.77 = 23.1 \text{ кг.}$
 $m_3 = m_2 = 23.1 \text{ кг.}$
 $m_A = \frac{m_1}{2};$
 $m_A = \frac{10.5}{2} = 5.25 \text{ кг.}$
 $m_B = \frac{m_1}{2} + 2 * \frac{m_2}{3};$
 $m_B = \frac{10.5}{2} + 2 * \frac{23.1}{3} = 20.65 \text{ кг.}$
 $m_C = m_3 + \frac{m_2}{3};$
 $m_C = 23.1 + \frac{23.1}{3} = 30.8 \text{ кг.}$

1.3.2 Рассчитаем массу противовеса m_{k1} из соотношения:

$$m_{k1} = m_B * \frac{l_1}{r_{k1}},$$

Где расстояние от оси вращения кривошипа до центра масс противовеса $r_{k1} = 0.4 * l_1$

$$r_{k1} = 0.4 * 0.35 = 0.14$$
 M

$$r_{k_{1\text{M3M}}} = 140/10 = 14\text{MM}$$

$$m_{k1} = 20.65 * \frac{0.35}{0.14} = 51.625$$
кг.

1.3.3. Для оценки эффективности частичного статического уравновешивания механизма сравнить, максимальную силу инерции от поступательного движения ползуна $\Phi_{CxMAX} = -m_c * a_{CxMAX}$ с силой инерции от массы m_B : $\Phi_B = -m_B * \omega^2 * l_1$, путем расчета отношения

$$\frac{\Phi_{CxMAX}}{\Phi_{\rm B} + \Phi_{CxMAX}} = \frac{m_c * (1 + \lambda_2)}{m_B * \lambda_2 + m_C * (1 + \lambda_2)}'$$

Соответствующего доле некомпенсированной неуравновешенности в общей начальной неуравновешенности механизма.

$$\frac{\Phi_{CxMAX}}{\Phi_{B} + \Phi_{CxMAX}} = \frac{30,8*(1+2,37)}{20,65*2,37+30,8*(1+2,37)} = \frac{103,796}{152,7365} = 0,68$$

Задание 1.4. Полное статическое уравновешивание кривошипно-коромыслового механизма

Исходными данными к выполнению задания являются длины и массы звеньев кривошипно-коромыслового механизма, спроектированного в задании 1.2.

1.4.1. Перейдем от распределенных масс звеньев к массам, сосредоточенным в шарнирах A,B,C,D:

$$m_1 = 30 * l_1;$$

$$m_1 = 30 * 0.35 = 10,5$$
 кг.

$$m_2 = 30 * l_2;$$

$$m_2 = 30 * 1,587 = 47,61$$
кг.

$$m_3 = 30 * l_3;$$

$$m_3 = 30 * 1,235 = 37,05$$
кг.

$$m_A=\frac{m_1}{2};$$

$$m_A = \frac{10,5}{2} = 5,25$$
кг. $m_B = \frac{m_1}{2} + \frac{m_2}{2}$; $m_B = \frac{10,5}{2} + \frac{47,61}{2} = 29,1$ кг. $m_C = \frac{m_2}{2} + \frac{m_3}{2}$; $m_C = \frac{47,61}{2} + \frac{37,05}{2} = 42,33$ кг. $m_D = \frac{m_3}{2}$; $m_D = \frac{37.05}{2} = 18.53$ кг.

1.4.2. Рассчитаем массу противовесов m_{k1} и m_{k2} из соотношений:

$$m_{k1} = m_B * \frac{l_1}{r_{k1}},$$
 $m_{k3} = m_C * \frac{l_3}{r_{k3}},$

Зададим:

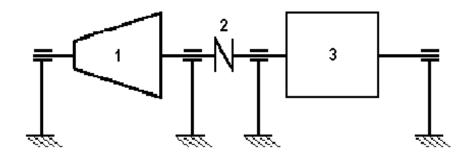
$$\begin{split} r_{k1} &= 0.4 * l_1 \\ r_{k3} &= 0.4 * l_3 \\ r_{k1} &= 0.4 * 0.35 = 0.14 \mathrm{M} \\ r_{k3} &= 0.4 * 1.235 = 0.494 \mathrm{M} \end{split}$$

Вычисляем:

$$m_{k1} = 29.1 * \frac{0.35}{0.14} = 72.15$$
кг. $m_{k3} = 42.33 * \frac{1.235}{0.494} = 105.82$ кг.

1.2 Примерный перечень вопросов для защиты

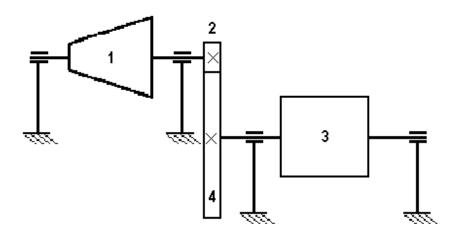
- 1. Изобразите структурную схему соосного и несоосного кривошипно-ползунного механизма. Что такое положительный и отрицательный дезаксиал?
- 2. Дайте определение кривошипу, шатуну, коромыслу. Что такое ход ползуна?


- 3. Что является исходными данными и что требуется определить при синтезе каждого механизма в задании?
- 4. Что такое угол давления? Укажите угол давления шатуна на ползун в кривошипно-ползунном механизме. Почему ограничивают угол давления шатуна на ползун? К чему это приводит?
- 5. Почему при синтезе кривошипно-ползунного механизма с дезаксиалом применяется метод последовательных приближений (табулирования)?
- 6. Как решается задача синтеза кривошипно-коромыслового механизма?
- 7. Сформулируйте теорему Грасгофа о существовании кривошипа в шарнирном четырехзвеннике.
- 8. С какой целью проводят уравновешивание механизмов?
- 9. Что является причиной неуравновешенности механизмов? Какие известны виды неуравновешенности механизмов?
- 10. Дайте определение статическому уравновешиванию механизмов.
- 11. В чем заключается метод замещающих масс?
- 12. Как выполняют полное статическое уравновешивание шарнирного четырехзвенника?
- 13. Как выполняют уравновешивание кривошипно-ползунного механизма.
- 14. Как оценивается доля некомпенсированной неуравновешенности в общей начальной неуравновешенности кривошипно-ползунного механизма?

2 Расчетно-графическая работа «Анализ динамики машинных агрегатов».

Задание 2.1. Исходными данными к заданию являются структурная схема агрегата, значение пускового момента турбины T_{II} , значения моментов инерции турбины J_1 , муфты J_2 , генератора J_3 , установившаяся частота вращения n_{ycm} . Требуется:

- 2.1.1. Составить и решить дифференциальное уравнение динамики разбега турбогенератора из состояния покоя до установившейся частоты вращения ω_{ycm} , исходя из условия изменения суммарного приведённого к валу турбины момента $T_{\Sigma np}$ в зависимости от частоты вращения ω при разбеге по линейному закону $T_{\Sigma np} = A B\omega$.
- 2.1.2. Построить график изменения частоты вращения агрегата во времени n=f(t) по десяти точкам через интервал времени 0.5T, где $T=J_{np}/B$ постоянная времени агрегата.


При решении принять $A=T_\Pi$ - $T_{\Pi C\, np}$, где T_Π - пусковой момент турбины; $T_{\Pi C\, np}$ - приведённый момент полезного сопротивления (в режиме холостого хода $T_{\Pi C\, np}=0$). Значение B может быть найдено из соотношения $B=A/\omega_{vcm}$.

Задание 2.2. Исходными данными к заданию являются структурная схема агрегата, , значения моментов инерции генератора J_3 , турбины J_1 , шестерни J_2 и колеса J_4 установившаяся частота вращения турбины n_{ycm} , передаточное число передачи u_{np} .

Требуется:

- 2.2.1. Составить и решить дифференциальные уравнения выбега агрегата от установившейся частоты вращения до состояния покоя:
- 2.2.1.1. Под действием постоянного момента сопротивления T_{CT} , приложенного к валу турбины;
- 2.2.1.2. Под действием постоянного момента сопротивления $T_{C\Gamma}$, приложенного к валу генератора.

2.2.2. Найти численные значения моментов сопротивления T_{CT} и T_{CT} , требуемых для обеспечения выбега агрегата в течение одной минуты, сравнить полученные значения, сделать выводы.

Выбор варианта задания

Выполнение РГР осуществляется в соответствии с индивидуальным заданием, которое определяется, исходя из значений двух целочисленных параметров: K и M. Значение параметра M определяет последняя цифра шифра зачетной книжки студента, значение параметра K - предпоследняя цифра того же шифра. Например, шифру 323840 соответствует K = 4 и M = 10. Залание 2.1.

Исходными данными к заданию являются:

значение пускового момента турбины $T_{II}=50$ Hм, значения моментов инерции генератора $J_3=(K+0,1^*M)$ κ гм², турбины $J_1=0,1J_3$ и муфты $J_2=0,05$ J_3 , установившаяся частота вращения $n_{ycm}=3000$ oб/мин. Например, для K=4, M=10, получим: $T_{II}=50$ Hм, $J_3=(K+0,1^*M)=(4+0,1^*10)=5$ κ гм², $J_1=0,1J_3=0,1^*5=0,5$ κ гм², $J_2=0,05$ $J_3=0,05^*5=0,25$ κ гм², $n_{ycm}=3000$ oб/мин. Задание 2.2

Исходными данными к заданию являются:

значения моментов инерции генератора $J_3=(K+0,1^*M)$ кгм², турбины $J_1=0,1$ J_3 , шестерни $J_2=0,05$ J_3 и колеса $J_4=0,8$ J_3 установившаяся частота вращения турбины $n_{vcm}=3000$ об/мин, передаточное число передачи $u_{np}=4$. Например, для K=4, M=10, получим: $J_3=(K+0,1^*M)=(4+0,1^*10)=5$ кгм², $J_1=0,1J_3=0,1^*5=0,5$ кгм² $J_2=0,05$ $J_3=0,05^*5=0,25$ кгм², $J_4=0,8J_3=0,8^*5=4$ кгм², $n_{vcm}=3000$ об/мин.

2.1 Пример решения.

Задание 2.1.

Исходные данные:

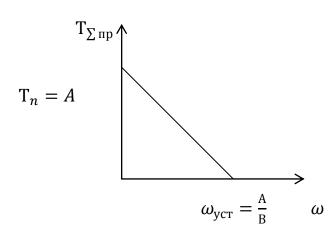
Пусковой момент турбины $T_{\Pi} = 50 \text{ Hm}$

Момент инерции генератора $J_3 = (K + 0.1 * M)$ кгм²;

$$J_3 = (6 + 0.1 * 5) = 6,5 \text{кгм}^2$$

Момент инерции турбины $J_1 = 0.1 * J_3$

$$J_1 = 0.1 * 6.5 = 0.65$$
кгм²


Момент инерции муфты $J_2 = 0.05 * J_3$

$$J_2 = 0.05 * 6.5 = 0.325$$
кгм²

Установившаяся частота вращения $n_{\rm ycr} = 3000 \frac{\rm of}{\rm muh}$.

2.1.1. Составим и решим дифференциальное уравнение динамики разбега турбогенератора из состояния покоя до установившейся частоты вращения $\omega_{\text{уст}}$, исходя из условия изменения суммарного приведенного к валу турбины момента $T_{\sum np}$ в зависимости от частоты вращения ω при разбеге по линейному закону

$$T_{\Sigma \pi p} = A - B * \omega$$

$$J_{\rm np} * \frac{d\omega}{dt} = \mathrm{T}_{\sum \mathrm{np}}$$

$$dt = J_{\rm np} * d\omega / T_{\sum \rm np}$$

$$\int dt = J_{\rm np} * \int d\omega / (A - B\omega)$$

$$t = -J_{\pi p}/B[\ln(A - B\omega) + c]$$

$$\omega|_{t=0}=0$$

$$c=-lnA$$

$$t = -J_{\pi p}/B[\ln(A - B\omega) - \ln A] = -J_{\pi p}/B[\ln(1 - B/A\omega)]$$

$$-B/-J_{\text{IID}} * t = \ln(1 - B/A\omega)$$

$$\omega = \frac{A}{B} * (1 - e^{-B*t/J_{\rm np}})$$

$$rac{B}{J_{
m np}} = J_{
m np} * rac{\omega_{
m ycr}}{B}$$
, где $rac{J_{
m np}}{B} = T$

Т- постоянная времени агрегата

$$\omega = \omega_{\rm ycr} * (1 - e^{-t/T})$$

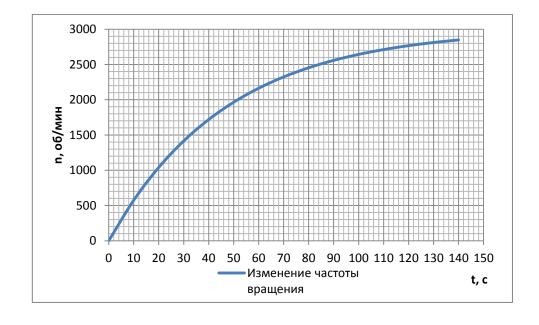
2.1.2. Построим график изменения частоты вращения агрегата во времени n=f(t) по десяти точкам через интервал времени 0.5T.

$$n = n_{\text{VCT}} * (1 - e^{-t/T})$$

$$T = \frac{J_{\rm np}}{B} = J_{\rm np} * \omega_{\rm ycr} / T_n$$

$$J_{\text{np}} = J_1 + J_2 + J_3$$

$$J_{\text{пр}} = 0.65 + 0.325 + 6.5 = 7.475$$
кгм²


$$\omega_{\text{vct}} = \pi * n_{\text{vct}}/30$$

$$\omega_{\text{yct}} = 3.14 * \frac{3000}{30} = 314 c^{-1}$$

$$T = 7.475 * \frac{314}{50} = 47$$

Время разгона примем равным 3Т

t,c	n об/мин
0	0
10	575
20	1040
30	1415
40	1719
50	1965
60	2163
70	2323
80	2453
90	2558
100	2643
110	2711
120	2767
130	2811
140	2847

Задание 2.2. Исходные данные:

Момент инерции генератора
$$J_3=(K+0.1*M)$$
кгм²; $J_3=(6+0.1*5)=6,5$ кгм² Момент инерции турбины $J_1=0,1*J_3$ $J_1=0,1*6,5=0,65$ кгм² Момент инерции муфты $J_2=0,05*J_3$ $J_2=0,05*6,5=0,325$ кгм²

Момент инерции колеса
$$J_4=0.8*J_3$$
 $J_4=0.8*6.5=5.2$ кгм 2 Установившаяся частота вращения $n_{\rm ycr}=3000\frac{\rm o6}{\rm мин}$. Передаточное число передачи $u_{\rm пp}=3$.

- 2.2.1. Составим и решим дифференциальные уравнения выбега агрегата от установившейся частоты вращения до состояния покоя.
- $2.2.1.1.\ \Pi$ од действием постоянного момента сопротивления $T_{c\tau}$, приложенного к валу турбины.

В качестве начального звена примем вал турбины.

$$J_{\text{np1}} * \frac{d\omega_{1}}{dt} = T_{\text{np.}} = -T_{\text{CT}}$$

$$J_{\text{np1}} * \frac{\omega_{1}^{2}}{2} = J_{1} * \frac{\omega_{1}^{2}}{2} + J_{2} * \frac{\omega_{2}^{2}}{2} + J_{3} * \frac{\omega_{3}^{2}}{2} + J_{4} * \frac{\omega_{4}^{2}}{2}$$

$$J_{\text{np1}} = J_{1} + J_{2} + J_{3} * \left(\frac{\omega_{3}}{\omega_{2}}\right)^{2} + J_{4} * \left(\frac{\omega_{3}}{\omega_{1}}\right)^{2}$$

$$J_{\text{np1}} = J_{1} + J_{2} + J_{3} / u_{\text{np}}^{2} + J_{4} / u_{\text{np}}^{2}$$

$$J_{\text{np1}} = 0.65 + 0.325 + \frac{6.5}{3^{2}} + \frac{5.2}{3^{2}} = 2.275 \text{KFM}^{2}$$

$$\int dt = J_{\text{np1}} * \int d\omega / T_{\text{CT}}$$

$$t = \frac{J_{\text{np1}}}{T_{\text{CT}}} * (\omega_{1} + c)$$

$$\omega_{1}|_{t=0} = \omega_{\text{ycr}}$$

$$0 = -J_{\text{np1}} / T_{\text{CT}}$$

$$c = -\omega_{\text{ycr}}$$

$$t = \frac{J_{\text{np1}}}{T_{\text{CT}}} * (\omega_{1} + c)$$

$$\omega_{1} = \omega_{\text{ycr}} - T_{\text{CT}} * t / J_{\text{np1}}$$

2.2.1.2. Под действием постоянного момента сопротивления $T_{\rm C\Gamma}$, приложенного к валу генератора.

В качестве начального звена принимаем вал генератора.

$$J_{\pi p1} * \frac{d\omega_{1}}{dt} = T_{\pi p.} = -T_{C\Gamma}/u_{\pi p}$$

$$\int dt = -(J_{\pi p1} * u_{\pi p}/T_{C\Gamma}) * \int d\omega_{1}$$

$$t = -(J_{\pi p1} * u_{\pi p}/T_{C\Gamma}) * (\omega_{1} + c)$$

$$\omega_{1}|_{t=0} = \omega_{ycT}$$

$$c = -\omega_{ycT}$$

$$t = -(J_{\pi p1} * u_{\pi p}/T_{C\Gamma}) * (\omega_{1} - \omega_{ycT})$$

$$\omega_{1} = \omega_{ycT} - \frac{(T_{C\Gamma} * t)}{(J_{\pi p1} * u_{\pi p})}$$

2.2.2. Найдем численные значения моментов сопротивления $T_{\rm CT}$ и $T_{\rm CT}$, требуемых для обеспечения выбега агрегата в течение одной минуты, сравним полученные значения, сделаем выводы.

1)
$$\omega_1 = \omega_{\text{уст}} - T_{\text{CT}} * t/J_{\text{пр1}}$$
 При $\omega_1 = 0$, $t = 60c$: $0 = \omega_{\text{уст}} - T_{\text{CT}} * \frac{t}{J_{\text{пр1}}}$
$$T_{\text{CT}} = \omega_{\text{уст}} * \frac{J_{\text{пр1}}}{t}$$
 $\omega_{\text{уст}} = \pi * n_{\text{уст}}/30$ $\omega_{\text{уст}} = 3.14 * \frac{3000}{30} = 314 \, c^{-1}$
$$T_{\text{CT}} = 314 * \frac{2.275}{60} = 11.9 \, \text{Hm}$$

2)
$$\omega_1 = \omega_{\text{уст}} - \frac{(T_{\text{СГ}} * t)}{(J_{\text{пр1}} * u_{\text{пр}})}$$
 При $\omega_1 = 0$, $t = 60c$: $0 = \omega_{\text{уст}} - \frac{(T_{\text{СГ}} * t)}{(J_{\text{пр1}} * u_{\text{пр}})}$

$$T_{\rm C\Gamma} = \frac{\omega_{\rm ycr} * u_{\rm np} * J_{\rm np1}}{t}$$

$$T_{\rm C\Gamma} = \frac{314 * 3 * 2,275}{60} = 35,72 \text{ Hm}$$

Вывод: Торможение удобно проводить на быстроходных валах, так как $T_{\rm C\Gamma}$ в 3 раза больше $T_{\rm CT}$.

2.2 Примерный перечень вопросов для защиты

- 1. Дайте определение начальному звену механизма.
- 2. На чем основано приведение масс в механизмах? Дайте определение приведенного момента инерции механизма, приведённой массы механизма.
- 3. На чем основано приведение сил в механизмах? Дайте определение приведенного момента сил, приведённой силы.
- 4. Запишите уравнение движения машинного агрегата в энергетической (интегральной) форме. Назовите метод его решения.
- 5. Запишите уравнение движения машинного агрегата в дифференциальной форме. Как оно запишется при постоянном приведённом моменте инерции?
- 6. В каких случаях удобно использовать уравнение движения машинного агрегата в энергетической форме, а в каких случаях в дифференциальной форме?
- 7. Что понимают под силовой (динамической) характеристикой двигателя? Какие силовые характеристики двигателя называют «жёсткими», какие «мягкими»?
- 8. Назовите фазы движения машинного агрегата. Чем характеризуется каждая фаза?
- 9. По какому закону изменяется частота вращения машинного агрегата на стадии разбега? На стадии выбега? По какой причине?
- 10. Что называют постоянной времени машинного агрегата?
- 11. Что влияет на длительность фазы выбега?
- 12. Дайте определение коэффициенту неравномерности движения механизма. Какие значения коэффициента неравномерности характерны для машин различного типа?

3 Требования к оформлению РГР.

Расчетно-пояснительная записка выполняется на стандартных листах формата A4 (210 мм \times 297 мм). Листы должны быть пронумерованы и сшиты в тетрадь.

Первый лист – титульный (см. приложение 1). На втором листе выполняется основная надпись по форме 2 (см. приложение 2) и помещается оглавление, которое содержит название всех разделов и подразделов пояснительной записки с указанием страниц. Разделы и подразделы нумеруются арабскими цифрами. В качестве примера – см. оглавление в настоящих методических указаниях. На третьем и последующих листах выполняется основная надпись по форме 2а (см. приложение 3). На последнем листе приводится список литературы, составленный в алфавитном порядке в соответствии с правилами библиографического описания.

Текст выполняется на одной стороне листа. Формулы и расчеты записываются в отдельные строки. Сначала формула должна быть записана в буквенном виде, затем в нее вместо букв подставляются численные значения (без каких-либо алгебраических преобразований), затем записывается результат с указанием размерности полученной величины, например:

$$T_1 = \frac{P_1}{\omega_1} = \frac{5,58 \cdot 103}{151,2} = 36,9 \text{ H} \cdot \text{M}$$

Каждая формула должна сопровождаться расшифровкой входящих в нее обозначений.

Расчеты следует при необходимости сопровождать эскизами деталей, схемами нагружения, эпюрами внутренних силовых факторов и т.п. Количество рисунков должно быть достаточным для пояснения текста пояснительной записки и расчетов.

4 Критерии и шкала оценивания расчетно-графической работы.

Оценка	Критерии оценки
Отлично	РГР выполнена полностью, без ошибок (возможна одна
	неточность, описка, не являющаяся следствием непо-
	нимания материала). Содержание работы полностью
	соответствует заданию. Структура работы логически и
	методически выдержана. Оформление работы отвечает
	предъявляемым требованиям.
	При защите работы обучающийся правильно и уверен-
	но отвечает на вопросы преподавателя, демонстрирует
	глубокое знание теоретического материала, способен
	аргументировать собственные утверждения и выводы.
Хорошо	РГР выполнена полностью, но обоснования шагов ре-
	шения недостаточны, допущена одна негрубая ошибка
	или два-три недочета, не влияющих на правильную по-
	следовательность рассуждений. Содержание работы
	полностью соответствует заданию. Структура работы
	логически и методически выдержана. Оформление ра-
	боты в целом отвечает предъявляемым требованиям.
	При защите работы обучающийся правильно и уверен-
	но отвечает на большинство вопросов преподавателя,
	демонстрирует хорошее знание теоретического мате-
	риала, но не всегда способен аргументировать соб-
	ственные утверждения и выводы. При наводящих во-
	просах преподавателя исправляет ошибки в ответе.
Удовлетворительно	В РГР допущено более одной грубой ошибки или более
	двух-трех недочета, но обучающийся владеет обяза-
	тельными умениями по проверяемой теме. Содержание
	работы частично не соответствует заданию. Оформле-
	ние работы в целом отвечает предъявляемым требова-
	ниям.
	При защите работы обучающийся допускает ошибки
	при ответах на вопросы преподавателя, демонстрирует
	слабое знание теоретического материала, в большин-
	стве случаев не способен уверенно аргументировать
	собственные утверждения и выводы.
Неудовлетворитель-	В РГР допущено большое количество существенных
но	ошибок по сути работы. Содержание работы не соот-
	ветствует заданию. Оформление работы не отвечает
	предъявляемым требованиям.
	ИЛИ
	Расчетно-графическая работа не представлена препо-
	давателю.
	При защите РГР обучающийся демонстрирует слабое
	понимание программного материала.

Приложение 1

Пример оформления титульного листа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра строительства, энергетики и транспорта

Синтез и уравновешивание плоских рычажных механизмов

Расчетно-графическая работа по дисциплине «Теория механизмов и машин»

Выполнил: студент группы КОб19о

Иванов М. А.

Шифр: КОб19о-108

Проверил: доцент кафедры СЭ и Т

Петров А. В.

МУРМАНСК 2021

Приложение 2

Основная надпись для текстовых документов по ГОСТ 2.104-68 (форма 2)

1зм.	Лист	№ докум.	Подпись	Дата			
Раз	раб.				Лиг	n.	Лист
Про	6.						
Н.к	сн тр.						
Уте	3.						

Приложение 3

Основная надпись для текстовых документов по ГОСТ 2.104-68 (форма 2a)

					Лист
Изм	Лист	№ докум.	Подп.	Дата	

6 Список рекомендуемой литературы

- 1. Теория механизмов и машин : учеб.-метод. пособие / В. П. Чмиль. Санкт-Петербург [и др.] : Лань, 2016. 279 с.
- 2. Теория механизмов и динамика машин : учебник для втузов / К. В. Фролов, С. А. Попов, А. К. Мусатов [и др.] ; под ред. К. В. Фролова. 4-е изд., испр. Москва : Высш. шк., 2003. 496 с.
- 3. Теория механизмов и машин: Учеб. для втузов/ К.В. Фролов, С.А. Попов, А.К. Мусатов и др.; Под ред. К.В. Фролова. М.: Высш. шк., 1987. 496 с.
- 4. Прыгунов А.И. Теория механизмов и машин. Методические указания к выполнению курсовой работы и контрольные задания для студентов инженерных специальностей. Мурманск: Изд-во МГТУ, 2003 г.
- 5. Курсовое проектирование по теории механизмов и механике машин : учеб. пособие для вузов / С. А. Попов, Г. А. Тимофеев; под ред. К. В. Фролова. 4-е изд., перераб. и доп. Москва : Высш. шк., 2002. 411 с.
- 6. Сборник задач по теории механизмов и машин : учеб. пособие для вузов / И. И. Артоболевский, Б. В. Эдельштейн. Изд. 3-е, стер. Москва : Альянс, 2013, 2014. 255, [1] с.
- 7. Левитская, О.Н. Курс теории механизмов и машин / О.Н. Левитская, И.И. Левитский М.: Высш.шк., 1978. 269 с.